博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
DP学习之路(1) 01背包
阅读量:5294 次
发布时间:2019-06-14

本文共 3506 字,大约阅读时间需要 11 分钟。

动态规划是算法中一门很重要的思想,其通过对每一步的假设规划,不停的寻找最优最有利的解决方案,然后一步一步求解出来。

而01背包是其中最基本的一种dp思想,其题目一般为给定一个容量为V的背包,然后有n件物品,其价值为value[i],每件物品只能最多选择一次或者不选择,问如何才能得到的物品价值最大。

一般dp问题的核心就是一个 状态转移方程 。状态转移方程一出来题目基本上就木得问题了。

通常来说,状态转移方程的代码思想一般如下

for(int i=0; i
=v[i]) dp[i+1][j] = max(dp[i][j], dp[i][j-v[i]]+val[i]); else dp[i+1][j] = dp[i][j]; }} 来看看这段代码,将第i件物品放在容量为j的背包中,使得dp[i][j]最大,对于第i件物品来说,有两种选择: 第一,不放这件物品。如果不放这件物品,则dp[i+1][j]=dp[i][j]。 第二,放这件物品。那么首先考虑是否放的下,就是剩下的空间j是否比这件物品的体积v[i]大。 如果大,则在j中腾出v[i]的空间给第i个物品,然后加上其价值与dp[i][j]比较一下就好了,取其中的最大值。 如果j小于v[i],那么这个物品就不要考虑了,直接丢掉就行了。

 

先看看基础的题目。

 

1.

这道题目就是一道裸的不能再裸的01背包,给定的容量V,n件物品,每件价值给定,然后只能选一次。

首先学习到了有两种方法解决这道题,第一种是用二维数组,将每次的中间过程都存储下来,状态转移方程又有两种写法。

1 dp[i+1][j]=max(dp[i][j],dp[i][j-v[i]]+val[i]);2 3 注意这个是数组从0开始进行for循环4 5 dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+val[i]);6 7 这个是数组从1开始进行for循环8 9 其中v代表体积,val代表价值

以下是二维数组ac代码:

#include 
#include
#include
#include
#define ll long long int #define inf 1000000007using namespace std;int main(){ int t; int val[1010],v[1010]; int dp[1010][1010]; cin>>t; while(t--) { int n,V; cin>>n>>V; for(int i=0;i
>val[i]; for(int i=0;i
>v[i]; for(int i=0;i
=v[i]) dp[i+1][j]=max(dp[i][j],dp[i][j-v[i]]+val[i]); else dp[i+1][j]=dp[i][j]; } } cout<
<

 还有另一种的一维数组的代码,一维数组其实就是对上面二维数组的空间优化,具体好像是对空间的一种优化,对于二维数组来说,中间的每一次循环还记录着,而这些数据都是冗余的,可以不用,所以可以用一维数组进行dp。

状态转移方程如下:

for(int i=0; i
=v[i]; j--) { dp[j] = max(dp[j], dp[j-v[i]]+val[i]); }}

为什么要从V开始递减遍历?我举个例子,假设一个物品GG价值1000,体积为2,那么假设我们按【0…..v】这个顺序遍历,那么在j=2时,dp[2] = max(dp[2], dp[0]+1000),那么dp[2] = 1000,当j=4时,dp[4]=max(dp[4], dp[2]+1000), dp[4] = 2000,这时我们再思考一下,GG将被放进背包两次了!如果我们逆序遍历,就可以避免这种结果。

以下是一维数组ac代码:

#include
#include
#include
#include
using namespace std;int main(){ int value[1010],dp[1010],v[1010]; int t; cin>>t; while(t--) { memset(dp,0,sizeof(dp)); memset(value,0,sizeof(value)); memset(v,0,sizeof(v)); int n,V; cin>>n>>V; for(int i=0;i
>value[i]; for(int i=0;i
>v[i]; for(int i=0;i
=v[i];j--) //j代表背包剩余的体积 { dp[j]=max(dp[j],dp[j-v[i]]+value[i]); } } cout<
<

 

2.

 

Problem Description
电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额。如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)。所以大家都希望尽量使卡上的余额最少。
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
 

Input

多组数据。对于每组数据:
第一行为正整数n,表示菜的数量。n<=1000。
第二行包括n个正整数,表示每种菜的价格。价格不超过50。
第三行包括一个正整数m,表示卡上的余额。m<=1000。
n=0表示数据结束。
 

 

Output
对于每组输入,输出一行,包含一个整数,表示卡上可能的最小余额。
 

 

Sample Input

1 50 5 10 1 2 3 2 1 1 2 3 2 1 50 0
 

Sample Output

-45 32

 题意大概就是饭卡的钱如果大于5,就能用,小于5就不能刷了,然后可以透支,如果大于5则可以减去一个数得到负值,问如何买使得剩下的钱最少。

题目思路一般就是先用sort把物品价值排个序,然后把最大的记录下来,然后用dp来使得剩余的钱尽可能的少并且大于5元。

ac代码如下:

#include
#include
#include
#include
using namespace std;int main(){ int val[1010],dp[1010]; int n,m; while(cin>>n&&n) { memset(dp,0,sizeof(dp)); memset(val,0,sizeof(val)); for(int i=0;i
>val[i]; sort(val,val+n); int maxn=val[n-1]; cin>>m; if(m<5) cout<
<
=val[i];j--) { dp[j]=max(dp[j],dp[j-val[i]]+val[i]); } cout<
<

 

转载于:https://www.cnblogs.com/wushengyang/p/10050939.html

你可能感兴趣的文章
【转】Android底层库和程序
查看>>
Attribute(特性)与AOP
查看>>
第三次作业
查看>>
tomcat7.0.27的bio,nio.apr高级运行模式
查看>>
苹果手表:大方向和谷歌一样,硬件分道扬镳
查看>>
Competing Consumers Pattern (竞争消费者模式)
查看>>
HDUOJ ------1398
查看>>
cf--------(div1)1A. Theatre Square
查看>>
Android面试收集录15 Android Bitmap压缩策略
查看>>
PHP魔术方法之__call与__callStatic方法
查看>>
ubuntu 安装后的配置
查看>>
Html学习_简易个人网页制作
查看>>
jqery总结
查看>>
VSCODE更改文件时,提示:EACCES: permission denied的解决办法(mac电脑系统)
查看>>
web前端之路,js的一些好书(摘自聂微东 )
查看>>
【模板】对拍程序
查看>>
dos批处理(bat)运行exe
查看>>
Pycharm安装Markdown插件
查看>>
【转】redo与undo
查看>>
C#更新程序设计
查看>>